
Chapter 16

Quantitative Proteomics in Yeast: From bSLIM and Proteome
Discoverer Outputs to Graphical Assessment
of the Significance of Protein Quantification Scores

Nicolas Sénécaut, Pierre Poulain, Laurent Lignières, Samuel Terrier,
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Abstract

Simple light isotope metabolic labeling (bSLIM) is an innovative method to accurately quantify differences
in protein abundance at the proteome level in standard bottom-up experiments. The quantification process
requires computation of the ratio of intensity of several isotopologs in the isotopic cluster of every identified
peptide. Thus, appropriate bioinformatic workflows are required to extract the signals from the instrument
files and calculate the required ratio to infer peptide/protein abundance. In a previous study (Sénécaut
et al., J Proteome Res 20:1476–1487, 2021), we developed original open-source workflows based on
OpenMS nodes implemented in a KNIME working environment. Here, we extend the use of the bSLIM
labeling strategy in quantitative proteomics by presenting an alternative procedure to extract isotopolog
intensities and process them by taking advantage of new functionalities integrated into the Minora node of
Proteome Discoverer 2.4 software. We also present a graphical strategy to evaluate the statistical robustness
of protein quantification scores and calculate the associated false discovery rates (FDR). We validated these
approaches in a case study in which we compared the differences between the proteomes of two closely
related yeast strains.
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1 Introduction

The yeast Saccharomyces cerevisiae is a biological model that is
widely used for the development and validation of global analytical
methods in functional genomics and genetics. Yeast has been exten-
sively studied for many years, resulting in a solid understanding of
its physiology and metabolism. Yeast is the first eukaryotic

Frédéric Devaux (ed.), Yeast Functional Genomics: Methods and Protocols,
Methods in Molecular Biology, vol. 2477, https://doi.org/10.1007/978-1-0716-2257-5_16, © The Author(s) 2022
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organism for which the genome was fully sequenced [1]. This has
opened up new avenues for the exploration of living organisms,
notably through the analysis of gene and protein expression using
the amazing recent technical developments in transcriptomics and
proteomics. In-depth knowledge of the yeast genome has enabled
the construction of complete collections of haploid or diploid
strains carrying modified alleles, for example, disruptions, dele-
tions, and ORF or promoter fusions with a large number of
reporter genes for use as probes to assess gene function and asso-
ciated regulatory networks, laying the foundation for systems
biology.

One specific aspect of yeast is its ability to grow in the presence
(aerobiosis) or absence (anaerobiosis) of molecular oxygen. This is
made possible by a metabolic switch that allows passage from
respiratory to fermentative metabolism, provided that the carbon
source available to the yeast can be metabolized by fermentation.
This requires processes in which mitochondrial functions are essen-
tial, making yeast a critical organism for deciphering the genetics,
biochemistry, and physiology of this energy producing organelle.

Yeast cells are capable of growing on synthetic media in which
the vitamins and essential trace elements are provided or on com-
plex media containing yeast hydrolysates or peptones. In wild-type
yeast grown on synthetic media, cell metabolism is based on the
assimilation of organic nitrogen (usually ammonium sulphate or
chloride) and the catabolism of a single carbon source, such as
glucose, glycerol, or acetate. The genetics of yeast has been brought
to light through the selection and use of mutants affected in the
synthesis of certain nucleotides (e.g., Ura3) or amino acids (e.g.,
Lys, His, Leu, Met, Arg, Trp). Such auxotrophic mutants require
the addition of the defective bases and/or amino acids in the
synthetic growth media.

Beyond the identification of proteins in complex extracts, mass
spectrometry-based proteomic analysis allows the quantification of
differences in the proteome between several biological states. Sev-
eral bottom-up quantitative proteomics approaches have been
reported [2], providing critical information in yeast biology. They
are based either on in vitro labeling of peptides by isobaric chemical
probes, releasing fragments in MS/MS, of which the measured
intensity reflects the abundance of the protein in the initial extract
(e.g., ICAT or TMT labeling), or on differential metabolic labeling
in vivo, in which the cells are cultured in the presence of “light”
(unlabeled) or “heavy” (labeled) amino acids that will be
incorporated into the proteins, allowing their quantification after
tryptic digestion and the measurement of a heavy–light ratio for
each peptide/protein (e.g., SILAC and derived methods) (for a
review, see [3]). Despite the fact that TMT- and SILAC-based
quantitative proteomics allow multiplexing multiple samples in a
single run, one of the most widely used proteomics approaches is
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still the label-free approach, in which individual LC-MS/MS runs
are compared and the intensity of the peptide ions in MS1 are
measured [4] to determine differences in protein abundance.

Recently we presented an innovative quantification method,
called simple light-isotope metabolic (SLIM) labeling [5]. The
SLIM-labeling strategy uses the fundamental property of the living
matter in which all the biomolecules are basically composed of
carbon, nitrogen, hydrogen, oxygen, and sulfur, with several addi-
tional elements, such as phosphorus, selenium, or iodine. Most of
these elements, except phosphorus, are naturally present in the
form of several stable isotopes for which the abundance is fixed
(Table 1). It is thus possible to infer their isotopic abundance in
biomolecules, such as amino acids by solely taking into account
their average elemental composition: C4.9384 H7.7583 N1.3577

O1.4773 S0.0417 [6].
This has important consequences in terms of high-resolution

MS-based peptide/protein analysis. Every peptide is measured as a
series of ions (m/z) in an isotope cluster of similar charge (z) but
with the mass ranging from the monoisotopic mass m0, containing
only the lightest isotopes of each element, to higher masses result-
ing from the statistical distribution of additional neutrons present
in the stable isotopes (isotopologs). The intensities of the various
isotopologs within an isotope cluster therefore depend on the
elemental composition of the peptide and follows a Poisson distri-
bution that can be accurately modeled using dedicated software,
such as MIDAS [7]. The basic principle of SLIM labeling is to
manipulate the elemental composition of proteins in vivo from
the natural abundance of the isotopes of the atoms present in
proteins (C, H, N, O, S, P), defining the “NC” (natural carbon)
condition as the condition named “12C” in which the proteins are
enriched in the light isotope of carbon (12C) and, eventually, nitro-
gen (14N) (referred as to “12C14N” condition). Considering the
main routes for amino-acid biosynthesis in yeast (Fig. 1) [8], we
hypothesized that providing yeast cells with U-[12C]-glucose as the
sole carbon source would result in the rapid synthesis of U-[12C]-

Table 1
Relative abundance of the stable isotopes of the elements found in proteins

12C ¼ 98.93% 13C ¼ 1.07%

1H ¼ 99.9885% 2D ¼ 0.0115%

16O ¼ 99.757% 17O ¼ 0.0373% 18O ¼ 0.2057%

14N ¼ 99.632% 15N ¼ 0.368%

32S ¼ 94.93% 33S ¼ 0.76% 34S ¼ 4.29% 36S ¼ 0.02%

31P ¼ 100%
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amino acids and their incorporation into newly synthesized pro-
teins. Applying this labeling method allowed us to experimentally
evaluate the half-life of the proteome in Candida albicans, and
measure the effect of the proteasome inhibitor MG132 and a
broad-specificity serine-protease inhibitor, PMSF, on the dynamics
of the proteome in this organism [5].

Increasing the amino-acid content in 12C (and to a lesser extent
in 14N) results in a different and simpler isotopic cluster that always
remains within the boundaries of that observed with a natural
isotopic composition, but with the intensity of the monoisotopic
ion greatly enhanced. This has significant impact on downstream
analyses, that is, allowing better signal-to-noise discrimination,
more precise mass determination, and better MS/MS fragmenta-
tion spectra. As a result, higher scores for peptide identification and
protein sequence coverage are obtained (see characteristic mass
spectra in Fig. 2a–c). We took advantage of these characteristics
to develop a new quantitative proteomics method in which peptides
originating from the NC condition are mixed in equimolar
amounts with peptides from the 12C condition. The intensity of

Fig. 1 Yeast Metabolism (adapted from Ljungdahl PO et al. YeastBook 2012 [5]
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every isotopolog in any isotope cluster is thus the sum of the
intensity of the isotopologs from each condition (Fig. 2b). There-
fore, measuring the ratio between the experimental values of the
monoisotopic ion (M0) and the next ion containing one more
neutron (M1), modulo the values of their theoretical intensity,
expressed as the probability of occurrence, in each condition allows
calculation of the molar fraction of the peptide originating from the
NC- and 12C conditions. We recently described the full formalism
for the quantification of 12C incorporation into proteins/peptides
and its use in quantitative proteomics, and we developed the data
processing tools required to smoothly run SLIM labeling
experiments [9].

One critical step in the SLIM-labeling quantification procedure
is the accurate extraction of the intensities for all isotopologs in
each isotope cluster from the experimental spectra. In our initial
study, we used commercial software, Progenesis QI for metabolo-
mics, but it does not provide the possibility to automatically link the
quantification files with the identification files [5]. This prompted
us to develop another workflow, referred to as bSLIM [9], in which
only the intensities of the identified peptides are used to extract the
data using an OpenMS node, FeatureFinderIdentification [9],
which was modified to fit every mass trace in the isotope cluster.
This approach only required us to install and run the KNIME
(Konstanz Information Miner) environment for computation [9],
together with the latest versions of OpenMS [10–12], and hence is
fully independent of any commercial software.

Here, we present an alternative integrated procedure that takes
advantage of the tools available in the proprietary software suite
Thermo Scientific Proteome Discoverer. Proteome Discoverer
(PD v2.4) is a popular program for the analysis of peptide-centric

Fig. 2 Theoretical spectra of the peptide DQPILFWGGATAVGQMLIQLAK from the protein YNL134c under NC (a)
and 12C (c) conditions and the corresponding experimental spectrum (b) of the same peptide from a 1:1
mixture of total extract from the 12C and NC conditions
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proteomics data, with a high level of integration with Thermo
Fisher Scientific high-resolution, high-sensitivity Orbitrap instru-
ments. This analytical platform includes many algorithms devel-
oped by Thermo or third parties, such as the IMP Protein
Chemistry facility (https://pd-nodes.org/) [13, 14] and others.
Proteome Discoverer is therefore widely used on a routine basis in
many MS-based proteomics laboratories. It associates and inte-
grates both raw spectra processing and filtering, peptide identifica-
tion through database searches in data-dependent analyses, diverse
quantification routines, and convenient spectra viewers. The output
of the Proteome Discoverer analyses is written in “.msf” or “.
pdresult” files. A key feature of “.pdresult” files is that they are
SQLite relational databases (https://www.sqlite.org) that can be
queried using SQL. The possibility to visualize individual anno-
tated spectra for peptides up to the level of their isotope clusters
with their associated intensity prompted us to develop the appro-
priate tools to extract this data and use it as input for our bSLIM
labeling quantitative proteomics strategy. We accessed the individ-
ual mass trace intensities by taking advantage of the capabilities of
the newly developed node, Minora, initially designed for label-free
quantification.

We also present a solution to assess the robustness of the
protein quantification scores calculated using bSLIM which was
missing from our previous data analyses workflow. Derived from
the SAM (Significance Analysis of Microarrays [15]) method, the
general idea is to randomize the original bSLIM output data sets
multiple times and calculate the associated “random scores.” These
scores are graphically compared to the “real scores” obtained from
the original bSLIM data. Proteins for which the real scores vary the
most from the random scores are thus easily detected and worth
considering for further analyses. In this chapter, we present a case
study to illustrate the different outputs from the various workflows
that we developed. We compared differences between the pro-
teomes of two “wild-type” Saccharomyces cerevisiae strains with
the same genetic background, but with one strain (BY4742) har-
boring the deletion of four genes (Ura3, His3, Leu2, and Lys2)
relative to the reference strain S288c (see Note 1 for data availabil-
ity). The proteomes of the two strains are expected to be very
similar and therefore represent a challenging test to assess the
sensitivity and specificity of our quantification methods.

Overall, we expect that these alternative solutions implemented
in the bSLIM data analysis workflow will be useful for proteomics
laboratories running Orbitrap-based mass spectrometers, which are
very familiar with Proteome Discoverer. This is an original way to
combine the completeness and reproducibility of routine proprie-
tary software with the power of open-source tools.
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2 Materials

1. Reagents for yeast synthetic growth media and appropriate
supplements.

2. SLIM-labeling specific reagent: U-[12C]-glucose (e.g., Cam-
bridge Isotope Laboratories).

3. Lysis buffer: 40 mM HEPES–KOH, pH 7.5, 350 mM NaCl,
10% glycerol, 0.1% Tween-20.

4. Acid-washed silica beads (0.45–0.5 mm Ø).

5. 200 μg/mL trypsin solution, prepared by dissolving 20 μg
trypsin (Proteomic grade) in 100 μL of 1 mM HCl.

6. Cold Acetone.

7. 50 mM ammonium carbonate (NH4HCO3).

8. 0.1% formic acid (MS grade).

9. Dry incubator at 37 �C.

10. Vacuum dryer (Speed Vac).

11. Low-binding microcentrifuge tubes.

12. 4–12% polyacrylamide gradient gels.

13. Coomassie blue (MS friendly, such as SimplyBlue SafeStain,
Invitrogen).

14. Bradford protein assay reagent.

15. An instrument setup for LC-MS/MSMS data acquisition (see
Note 2).

16. Appropriate software suites for quantification and identifica-
tion of the peptide/protein content of the samples analyzed
(Fig. 3).

Fig. 3 General organization of the data processing workflows
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3 Methods

3.1 Cell Growth and

Preparation of Protein

Extracts

1. Grow the cells to be compared in a synthetic medium with
either regular glucose (NC-condition), or U-[12C]-glucose
(12C-condition) as the sole carbon source (see Note 3).

2. At the appropriate cell density (mid-exponential phase of
growth), collect the cells by centrifugation for 10 min at
4000 � g at 4 �C.

3. Wash the cell pellet with cold water, resuspend the cells in lysis
buffer at a cell density of 0.6 g/mL, and lyse the cells by adding
0.32 mL acid-washed, heat-sterilized silica glass beads
(0.45–0.5 mm∅) to 0.6 mL cell suspension and vortexing
the resulting suspension three times for 5 min, leaving the
tubes on ice for 5 min between each vortexing.

4. Centrifuge the lysed cells for 5 min at 3000 � g and collect the
supernatant, referred to as the cell homogenate.

5. Carefully measure the protein concentration using the Brad-
ford Protein microassay and validate the protein measurement
by running an aliquot on an SDS-PAGE gel and staining with
Coomassie Blue.

6. Precipitate a 50-μg protein aliquot using 6 vol. cold acetone for
2.5 h at �20 �C.

7. Resuspend the dry protein pellet in 50 mM ammonium car-
bonate buffer by heating for 15 min at 95 �C.

8. Add 5 μL of 200 μg/mL trypsin stock solution and incubate
for 12 h at 37 �C in a dry incubator.

9. Remove all solvents by vacuum drying.

10. Resuspend the peptides in 0.1% formic acid.

11. Carefully mix an equal amount of peptides from the NC- and
12C-conditions.

12. Inject the samples, typically 5 μg in�5 μL, into the LC-MSMS
instrumental setup (see Note 4).

13. Ensure that your instrumental setup allows the isotopic resolu-
tion of all the peptides analyzed (see Note 5).

14. Save the “.raw” files for data processing and signal extraction.

15. Create a folder to gather all the “.raw” files from one project
together.

3.2 Data Processing

Workflows

1. Install the appropriate computational resources.

(a) Proteome Discoverer 2.4 or higher with a valid
activation key.
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(b) KNIME (v4.2.3) with all available extensions (https://
www.knime.com/downloads): the OpenMS nodes
(v2.6.0) are part of the “community nodes.”

(c) R (v4.0.2), including the dplyr, dbplyr, RSQLite, sqldf,
readr, raster, RMySQL packages and libraries (https://
cran.r-project.org/bin/windows/).

3.2.1 Proteome

Discoverer Analysis

1. Open Proteome Discoverer 2.4.

2. Create a new study and add your Thermo Fisher Scientific mass
spectrometry .raw files.

3. Select the appropriate “processing.” The basic processing
workflow is composed of the following nodes: spectrum files,
spectrum selector, sequestHT (1.1.0.189), Percolator
(3.02.1), and IMP-ptmRS. To this Processing workflow, add
the “Minora Feature Detector” node linked to the “Spectrum
Files” node and set the correct advanced parameters) (seeNote
6).

4. Select the appropriate “consensus” workflow composed of the
following nodes: MSF Files, PSM Grouper, Peptide Validator,
Peptide and Protein Filter with a link to Protein annotation,
Protein Scorer with a link to Protein FDR Validator, and Pro-
tein Grouping (see Note 7).

5. Enable the postprocessing node “Display Settings.”

6. Run the analysis, one file at the time, by giving nonambiguous
names to the output files. The produced results files from
PD2.4 have the extension .pdresult and are used as input in
our KNIME workflow.

3.2.2 Isotopolog Intensity

Extraction and Peptide/

Protein Quantification

Using a Dedicated bSLIM

KNIME Workflow (Fig. 4)

1. Open KNIME 4.2.3.

2. Import from https://zenodo.org (DOI 10.5281/
zenodo.4467829), the bSLIM quantification workflow
“File > Import KNIME workflow” (file extension is “.knwf”).
The workflow is a modification of the original workflow pre-
sented in our previous study [9]. The adaption is very simple
(disconnection between metanode 1.2 “FFiDData filtering”
and connection with the Row filter “erase ModifiedPeptides”).

This workflow contains three main parts.

(a) The “.pdresult” file, which extracts all data concerning
every peptide, including their identification and the inten-
sity of the isotopologues in the isotope clusters. This
procedure uses an R script written specifically for this
study. It is embedded in a dedicated RSnippet as a part
of the KNIME quantification workflow (see Note 8 on
SQL request formalism).
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(b) The peptide/protein quantification workflow based on
our previous study [9]. As previously described, two
biological conditions are considered: complete labeling
of the proteins (true wild-type strain) or partial labeling
of the proteins (strains that are auxotrophic for specific
amino acids).

(c) The procedure to compute the statistics on the identified
peptides/proteins. These two procedures use R scripts
embedded in specific RSnippets.

3. Check that your installation of Rserver allows all RSnippets to
run smoothly.

4. There are two possible cases:

(a) The samples come from an autotrophic yeast strain and
the SLIM labeling is complete: follow “cases of total label-
ing experiment.”

(b) The samples come from auxotrophic cells for which cer-
tain amino acids are not labeled. The SLIM labeling is
thus incomplete: follow “case of incomplete labeling exper-
iment.” In the latter case, the essential amino acids are
defined as containing “Carbon B,” corresponding to car-
bon atoms of natural isotopic abundance. It is therefore
necessary to open the meta-node “Compute_Nb_ele-
ments& theoretical data” and then the meta-node “Com-
pute Elemental Composition” and, finally, the carbon B
calculus node (Compute Nb_Carbon-B (Ex: HKL)) to
add the correct total number of carbons to each exoge-
nous amino acid by typing the regular expression in the
form “($Nb_H$*6)+ ($Nb_K$*6)+ ($Nb_L$*6)”, as
exemplified for the BY4742 strain auxotrophic for histi-
dine (H), lysine (K), and leucine (L). The number of
carbon atoms for each amino acid is shown in Table 2.

Fig. 4 KNIME workflow of the integrated “.pdresult” processing node connected to the quantification nodes
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5. Set the Excel exporter nodes with an appropriate name for file
output (scores for quantifications at proteins or peptide levels)
(see Note 9).

3.2.3 Statistics and

Graphical Assessment of

Score Significance

For statistical analysis of differential expression, we reproduced the
SAM methodology, adapting it to the specifics of the quantitative
measurements of protein abundance that are obtained at the end of
the bSLIM workflow (Fig. 5) (seeNote 10). Workflows available at
https://zenodo.org (DOI 10.5281/zenodo.4467882).

1. Aggregate the protein quantification results from individual
experiments (replicates) into a single “.tsv” table: Accession/
“name of column-2”/ “name of column-3”/ . . . / “name of
column-n.” Typically, column-2 to –n represents the log2(Fold
change) of protein abundance per experimental condition.

2. Load the R scripts developed in this study to compute the
scoring functions, and save the analysis.

3. Use the graphical package ggplot2, within the script, to pro-
duce the figures showing differentially expressed proteins.

4. Retrieve the table produced by the script containing the pro-
teins for which the over- or underexpression is statistically
significant between the different experimental conditions.

3.3 Case Study:

BY4742 Vs S288c

Proteome Comparison

To test and illustrate the different outputs from the various work-
flows, we compared the differences between the proteomes of two
“wild-type” Saccharomyces cerevisiae strains with the same genetic
background but with one strain (BY4742) harboring the deletion
of four genes (Ura3, His3, Leu2, and Lys2) versus the reference
strain S288c. The proteomes of the two strains are expected to be
very similar (see Note 3 for experimental details).

As shown in Fig. 6, the graphical representation of the distri-
bution of quantification quality scores shows the efficiency of the
workflows to identify proteins that are underexpressed (yellow) or
overexpressed (blue) in the laboratory wild-type strain BY4742
relative to the reference strain S288c. All the proteins encoded by
the genes that are deleted in BY4742 appear as the most signifi-
cantly diminished (indeed absent) in BY4742, showing the sensi-
tivity and specificity of the proposed quantification methods.

Table 2
Number of carbon atoms per amino acid

Amino acid A C D E F G H I K L

Nb carbon atoms 3 3 4 5 9 2 6 6 6 6

Amino acid M N P Q R S T V W Y

Nb carbon atoms 5 4 5 5 6 3 4 5 11 9
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4 Notes

1. The original data sets are publicly available in the ProteomeX-
change platform under the Pride submission number
PXD021329.

2. The instrumental setup in our laboratory consists of Orbitrap
Fusion Tribrid ETD and Orbitrap Q-Exactive Plus mass spec-
trometers, equipped with Easy-Spray nanoelectrospray ion
sources. The LC setup consists of Easy nano-LC Proxeon
1000 or 1200 systems equipped with an Acclaim PepMap100

Fig. 5 Schematic representation of the methodology used to assess the relevance of the bSLIM results
exported for each protein. (a) The original bSLIM output data set is organized as a table in which the proteins
are presented in rows and the repetitions of the experiments in columns. For all proteins, score values are
calculated and are next sorted from the highest to the lowest. (b) Random data set is created from the original
dataset, randomly sampling the values in each column. New scores are next calculated and sorted from the
highest to the lowest. This process is repeated N times, resulting in a final table with N columns, comprised of
the sorted values from each sampling. The average values of all sorted scores are finally calculated. Note that
the maximal average value is derived from calculation of the mean between the maximal score values
obtained in each sampling. (c) The significance of the scores obtained from the original data set are
graphically assessed by plotting the S*real values (a) against the S*rand values (b). Significant scores are
those that are higher (colored in blue) or lower (colored in yellow) than the random scores. False discovery
rates are finally calculated, comparing for each protein score, the average number of other scores in the table
of sorted values (from each sampling, see (b)) that are higher (respectively lower) than the number of scores
that are higher (respectively lower) in the original dataset. This is the same method as detailed in [15]
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C18 precolumn and a Pepmap-RSLC Proxeon C18 column.
These devices are all from Thermo Fisher Scientific (Bremen,
Germany and San Jose, CA, USA).

3. In the case study presented here, the S. cerevisiae strains S288c
(MATα SUC2 gal2 mal2 mel flo1 flo8-1 hap1 ho bio1 bio6)
[16] and its isogenic derivative BY4742 (MATα his3Δ1 leu2Δ0
lys2Δ0 ura3Δ0) are grown on a synthetic medium made of
6.7 g/L Yeast Nitrogen Base (YNB) with ammonium sulfate,
without amino acids, with 0.5% glucose as the sole carbon
source. The auxotrophy of the BY4742 strain is complemented
with uracil (20 mg/L), histidine (20 mg/L), and leucine and
lysine (both 30 mg/L). The carbon source was either regular
D(+)-glucose anhydrous, defining the normal condition
(NC condition), or U-[12C]-glucose (Cambridge Isotope
Laboratories), defining the 12C condition. The 10% glucose
stock solutions were filter-sterilized.

4. Liquid chromatography coupled to mass spectrometry data
acquisition:

Fig. 6 Experimental distribution of the statistical distribution of the protein quantification quality scores in the
characterization of the differences between the BY4742 and S288c proteomes
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In the case study presented here, the chromatographic
separation of peptides was performed using the following para-
meters: Acclaim PepMap100 C18 precolumn (2 cm, 75 μm i.
d., 3 μm, 100 Å), Pepmap-RSLC Proxeon C18 column
(75 cm, 75 μm i.d., 2 μm, 100 Å), and 300 nL/min flow.
The chromatographic separation of peptides was obtained
with a gradient consisting of 95% solvent A (water, 0.1% formic
acid) to 35% solvent B (99.9% acetonitrile, 0.1% formic acid) in
90 min, followed by column regeneration for 15 min, giving a
total run time of 1 h and 45 min.

5. Peptides masses were analyzed in the Orbitrap cell in full ion
scan mode at a resolution of 70,000 with a mass range of m/z
375–1500 and an AGC target of 3.106. MS/MS were per-
formed in a Top 20 DDA mode. Peptides were selected for
fragmentation by Higher-energy C-trap Dissociation (HCD)
with a Normalized Collisional Energy of 27%, and a dynamic
exclusion of 30 s. Fragment masses were measured in the Orbi-
trap cell at a resolution of 17,500, with an AGC target of 2.105.
Monocharged peptides and unassigned charge states were
excluded from the MS/MS acquisition. The maximum ion
accumulation times were set to 50 ms for MS and 45 ms for
MS/MS acquisitions respectively.

6. All MS/MS data are processed using the SequestHT
(v1.1.0.189) node. The mass tolerance is set to 6 ppm for
precursor ions and 0.02 Da for fragments when using an Orbi-
trap Q-Exactive Plus mass spectrometer. The following altera-
tions are used for various modifications: carbamidomethylation
(C), if the sample is reduced and alkylated, and oxidation (M).
Phosphorylation (STY) and acetylation (K, N-term) are gener-
ally added for additional analyses of trypsin digests. The maxi-
mum number of missed cleavages by trypsin is limited to two.
MS/MS data are searched against the Uniprot Saccharomyces
cerevisiae reference proteome UP000002311 (https://www.
uniprot.org/proteomes/UP000002311, 6049 protein
counts).

7. The Consensus workflow is very basic, because using the Min-
ora node, as presented here, strictly requires that only one
results file is processed per run (Fig. 7: Proteome Discoverer
2.4 consensus workflow for presentation).

(a) The R snippet uses SQL query to link the table of identi-
fication with the isotopic intensities. The data are then
incorporated in the KNIME workflow.

(b) The computation is rapid and can be performed as a side
analysis during the bSLIM experiment. In cases of auxot-
rophy, only the amino acids synthesized by the yeast are
labeled, whereas the exogenous amino acids that need to
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be added to the media are not, resulting in mixed labeling.
Quantification is possible with the introduction of a new
calculation to accommodate this type of analysis. Experi-
mental data were analyzed using BY4742 auxotrophic
yeast.

8. For each identified peptide, we extracted the following items,
which are combined in a single output table: FeatureId /
MassOverCharge / ParentProteinAccessions / ParentProtein-
Descriptions / MasterScanNumbers / RetentionTime /
Charge / Sequence / Modifications / MonoisotopicMassO-
verCharge / Area / Intensity / NumberOfIsotopes / MassO-
verChargeIsotope / PeakHeight (M0) / PeakArea (M0) /
PeakHeight (M1) / PeakArea (M1) / . . . / PeakHeight (M4)
/ PeakArea (M4).

(a) The “.pdresult” file is an SQLite relational database and
the information can be accessed using SQL queries. The
database contains all PD search parameters, variables, and
results. In our quantification workflow, we only need to
access three tables that contain the relevant information:

• TargetPsms, containing the peptide IDs.

• LcmsFeatures, with the description of the MS1 cluster
used for the identification.

Fig. 7 Details of Proteome Discoverer 2.4 processing (left panel) and consensus (right panel), including the
specific Minora node parameters to extract the isotopolog intensities for every isotope cluster
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• LcmsPeaks, which is the most important in this study,
because it contains the abundance of each individual
isotopolog contained in each independent identified
isotopic cluster.

(b) To extract and produce the final output table from the
database (“.pdresult”), we created an original
workflow to:

• Import the “.pdresults” file.

• Create explicit path names to access the requested
data, using the Uniform Resource Identifier (URI)
node of KNIME.

• Embed the SQL commands into an RSnippet to
retrieve the expected data and create two tables (Fea-
ture_Data and Peak_Data in the R code). These tables
are further joined using a connection link between
them as an intermediate table used as a “dictionary”
of ID equivalents.

• Define the ordered rank of the isotopologs extracted
by sequential numbering of the lines related to each
PSM (Protein Spectrum Match).

(c) Within the R script, the complete SQL request for gen-
erating Table Feature_Data is as follows:

select TargetPsms.MassOverCharge, TargetPsms.ParentProtei-

nAccessions, TargetPsms.ParentProteinDescriptions, Tar-

getPsms.MasterScanNumbers, TargetPsms.RetentionTime,

TargetPsms.Charge, TargetPsms.Sequence, TargetPsms.Modifica-

tions, LcmsFeatures.MonoisotopicMassOverCharge, LcmsFeatures.

Area, LcmsFeatures.Intensity, LcmsFeatures.NumberOfIsotopes,

LcmsFeatures.Id as FeatureId

from TargetPsms, TargetPsmsLcmsFeatures, LcmsFeatures

where TargetPsms.PeptideID = TargetPsmsLcmsFeatures.Tar-

getPsmsPeptideID

and TargetPsmsLcmsFeatures.LcmsFeaturesId = LcmsFeatures.Id

(d) Within the R script, the complete SQL request for gen-
erating Table Peak_Data is as follows:

select LcmsFeatures.Id as FeatureId, LcmsPeaks.MassOverCh-

arge, LcmsPeaks.PeakHeight, LcmsPeaks.PeakArea

from LcmsFeatures, LcmsFeaturesLcmsPeaks, LcmsPeaks

where LcmsFeaturesLcmsPeaks.LcmsFeaturesId = LcmsFeatures.Id

and LcmsFeaturesLcmsPeaks.LcmsPeaksId = LcmsPeaks.Id

(e) The intensity of the isotopolog ions is defined by the
peak area.
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(f) We restrict the number of isotopologs during extraction in
the final dataset to five, as we only require M0 and M1 for
further quantification calculations.

9. The produced table is used in the bSLIM workflow for com-
plete or incomplete labeling with the correct exogenous (non-
labeled) amino acids given in parameters. The code proceeds to
the ratio of M1 over M0 to quantify the molar fraction, the key
variable for the quantification. The ratio of the molar fraction/
(1-molar fraction) is calculated. For protein levels, all top N
peptides log2(Ratio) are grouped together to obtain classical
fold changes for biological interpretations.

10. A key question in proteomics data analysis is the distinction
between noteworthy (or significant) results from other obser-
vations, which are false positives, that is, acquired by random
chance. Indeed, the large amount of data arising from proteo-
mics technologies is associated with an increase in the possibil-
ity to observe atypical “by chance” values in the dataset. In this
context, statistical methodologies generally assume that all
variations in the data are due to random fluctuations and,
accordingly, derive a probability to observe variations that are
greater than those present in the data. Random fluctuations
can be modelled in two different ways. In the first, a mathe-
matical function is chosen (often normal or student laws) and a
statistical hypothesis is used to discriminate “significant” from
“nonsignificant” observations, based on a predefined error rate
(generally 5%). In the second, random permutations of the
original dataset are performed to define empirical distributions,
which will be used to assess potential random fluctuations. It is
a remarkably interesting approach, especially when the theoret-
ical probability distributions of the studied parameters are not
demonstrated, as is the case with the bSLIM output dataset.
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